skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Jongho"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Understanding and handling interference across multiple active cameras. 
    more » « less
  2. Membrane technologies that enable the efficient purification of impaired water sources are needed to address growing water scarcity. However, state-of-the-art engineered membranes are constrained by a universal, deleterious trade-off where membranes with high water permeability lack selectivity. Current membranes also poorly remove low–molecular weight neutral solutes and are vulnerable to degradation from oxidants used in water treatment. We report a water desalination technology that uses applied pressure to drive vapor transport through membranes with an entrapped air layer. Since separation occurs due to a gas-liquid phase change, near-complete rejection of dissolved solutes including sodium chloride, boron, urea, andN-nitrosodimethylamine is observed. Membranes fabricated with sub-200-nm-thick air layers showed water permeabilities that exceed those of commercial membranes without sacrificing salt rejection. We also find the air-trapping membranes tolerate exposure to chlorine and ozone oxidants. The results advance our understanding of evaporation behavior and facilitate high-throughput ultraselective separations. 
    more » « less
  3. Abstract Image sensors capable of capturing individual photons have made tremendous progress in recent years. However, this technology faces a major limitation. Because they capture scene information at the individual photon level, the raw data is sparse and noisy. Here we propose CASPI: Collaborative Photon Processing for Active Single-Photon Imaging, a technology-agnostic, application-agnostic, and training-free photon processing pipeline for emerging high-resolution single-photon cameras. By collaboratively exploiting both local and non-local correlations in the spatio-temporal photon data cubes, CASPI estimates scene properties reliably even under very challenging lighting conditions. We demonstrate the versatility of CASPI with two applications: LiDAR imaging over a wide range of photon flux levels, from a sub-photon to high ambient regimes, and live-cell autofluorescence FLIM in low photon count regimes. We envision CASPI as a basic building block of general-purpose photon processing units that will be implemented on-chip in future single-photon cameras. 
    more » « less
  4. null (Ed.)
  5. null (Ed.)
    Abstract This document presents the physics case and ancillary studies for the proposed CODEX-b long-lived particle (LLP) detector, as well as for a smaller proof-of-concept demonstrator detector, CODEX- $$\beta $$ β , to be operated during Run 3 of the LHC. Our development of the CODEX-b physics case synthesizes ‘top-down’ and ‘bottom-up’ theoretical approaches, providing a detailed survey of both minimal and complete models featuring LLPs. Several of these models have not been studied previously, and for some others we amend studies from previous literature: In particular, for gluon and fermion-coupled axion-like particles. We moreover present updated simulations of expected backgrounds in CODEX-b’s actively shielded environment, including the effects of shielding propagation uncertainties, high-energy tails and variation in the shielding design. Initial results are also included from a background measurement and calibration campaign. A design overview is presented for the CODEX- $$\beta $$ β demonstrator detector, which will enable background calibration and detector design studies. Finally, we lay out brief studies of various design drivers of the CODEX-b experiment and potential extensions of the baseline design, including the physics case for a calorimeter element, precision timing, event tagging within LHCb, and precision low-momentum tracking. 
    more » « less